手机浏览器扫描二维码访问
「.——-你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特徵不等于2的话,那麽仿射方程就是y^2=~3+a^2+b+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用座标系画出的平面图。
「」.———-很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。」
「这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什麽常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解o
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能透过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引l入0这个群中的零元,根据规则,任何一个点P跟0相加时结果依然是P。
——--我们再透过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连线P和2P找到与曲线的第三个交点再与0点相连找到第四个交点,不行就重复这个步骤找第五个交点·
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程式进行叠代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程式选代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。」』
乔喻一口气讲了整整一个小时,只觉得口乾舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:「咋样,兰老师,你觉得我这种解法有普适性吗?」
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱罗月,被高阶代数几何所支配的恐惧。
什麽射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭藉他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
「乔喻,说实话,我的水平不够,没法判断-———-所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎麽解决问题,我没办法帮你。但我可以教你论文具体该怎麽写。
毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。」
顾修陆箐瑶免费阅读全文 顾修陆箐瑶都叛出宗门了,谁还惯着你们免费阅读全文 退役后,我成为了萝莉的魔法导师 都叛出宗门了,谁还惯着你们顾修陆箐瑶无广告弹窗 我在恋综里疯狂通关恐怖游戏 顾修陆箐瑶最新章节在线阅读 妖尾:我才不要当会长 欠债大佬们对我咬牙切齿 都叛出宗门了,谁还惯着你们顾修陆箐瑶免费阅读全文 九皇子:开局推到女皇妃 顾修陆箐瑶都叛出宗门了,谁还惯着你们最新章节免费阅读 顾修陆箐瑶无广告弹窗 都叛出宗门了,谁还惯着你们顾修陆箐瑶最新章节免费阅读 魅力点满,继承游戏资产 在下欧阳锋 重启人生:逐渐破防的财阀千金 怪猎:这条火龙有特性 我一个反派这么做很合理吧! 顾修陆箐瑶都叛出宗门了,谁还惯着你们无广告弹窗 顾修陆箐瑶最新章节免费阅读
烂尾小说高开低走,读者怨念爆表疯狂刷负分,小说修改系统出动,绑定每个小说里的女配,修改反派剧情,挽救小说世界。然而第一个世界国师反派被女帝宿主打断手脚,收为后宫。第二个世界阴暗反派被白莲宿主捆绑囚禁,生死未卜。第三个世界强惨反派被病娇宿主夺取内丹,沦为鼎炉。读者泪目一时间竟然分不清到底谁才是反派!每个世界相对独立,男女主均为切片,1v1,最后一个世界收束...
...
梦中修仙,秦天获得无上医术与炼丹等传承,而那些家族缺依然把他当做窝囊废上门女婿看待。欺软怕硬?恶名打压?不存在的!敢狂,敢装,敢裱的人,必将踏入脚下!...
袁木野意外穿越到一个百鬼夜行的世界,这里有红衣女鬼索命,落水鬼找替死鬼重重危险叠加之下,袁木野意外开启系统,重启人生。...
陈家天才陈凡,为爱人而战,却沦为废人,修为尽失并遭冷眼!偶入圣地,一朝修炼得万古圣体,窥得九天大道!这一次!陈凡不会再准许有人负他!...
番茄继吞噬星空莽荒纪雪鹰领主后的第九本小说。在这个世界,有狐仙河神水怪大妖,也有求长生的修行者。修行者们,开法眼,可看妖魔鬼怪。炼一...