手机浏览器扫描二维码访问
第107章徐川,你怎么看?(三更求订阅月票)
徐川刚转身走了两步,身后陶哲轩教授的邀请就过来了。水印广告测试水印广告测试
停下脚步,他有些疑惑的看了一眼,问道:“舒尔茨教授的报告会不是在明天上午九点吗?”
他之前看过这次数学交流会的形成安排,对于每一个值得他去听的报告时间都记得清清楚楚,舒尔茨教授的报告是他这次的重点目标之一。
舒尔茨教授和陶哲轩一样,是数学界的新星,不过他的年龄要小一些,今年还不到三十岁。
两人被数学界誉为双子塔,可见他们已经拉开了其他同龄人不小的差距。
“是的,原本是上午十点,但是w.t高尔斯教授临时有事情赶回剑桥了,所以今天下午的报告有一份提前了,这些东西应该发你邮箱了。”陶哲轩笑着解释道。
“哦,原来是这样,那麻烦陶教授了。”徐川点了点头,转身跟上陶哲轩的步伐。
“正好咱可以接着聊聊具分形边界的问题不是吗?”陶哲轩推了推眼镜框,笑着看向徐川。
两人赶到舒尔茨教授所在报告会一号礼堂时,证明报告已经开始了。
找了个座位坐下,徐川望向了舞台上留着齐肩卷发的身影,开始认真的听讲。
这次普林斯顿的数学交流会,彼得·舒尔茨不出意料的讲解是他的最大成果‘类完美空间的数学概念’。
这是他在博士期间创造的一种数学工具,又叫做‘p·s进域-几何理论’。
这项理论让数学家得以借此证明代数几何和其他领域中的许多未解谜题,也将拓扑学、伽罗瓦理论和p进数结合到了一起,构成了新的数学。
目前而言,这套理论在数学界很火,在数论领域更是独一无二的宠儿。
一方面是发明者舒尔茨本人利用这套理论对朗兰兹纲领做出来很多重大的突破,这引起了众多数学家的重视。
另一方面,则是p进数是数论领域的核心,比如怀尔斯教授在证明费马大定理的时候,几乎每一步都涉及到了p进数的概念。
而且目前数学界几乎一致认为,几何和代数的大统一的研究就可能在p进数上。
哦,顺带提一下,他之前的研究,weyl-berry猜想也有一部分和p进数有关系。
所以徐川对于舒尔茨教授的这一场报告会很重视,寄希望于从上面得到某些灵感,进而对weyl-berry猜想的谱渐近做出突破。
“徐,我们都知道p进ζ函数是p进l函数的一个例子,它体现了对应数域的解析性质,而coates-wiles和coleman在明显互反律的工作表明上述多项式和ch(ec)只是相差一个固定多项式。”
“你说如果选取一个合适的伽罗德域作为有限交换群,是否能将代数对象等同于p-进解析对象?”
一旁,正认真坐着听讲的陶哲轩突然凑了过来,小声的询问道。
徐川皱了皱眉,问道:“岩泽理论的主猜想?”
陶哲轩点了点头,道:“嗯,刚刚在听舒尔茨教授讲解他的类似完备空间理论时有些启发,或许值得尝试一下,你怎么看?”
闻言,徐川紧皱起了眉头,思虑了一番后道:“考虑群环zp[gn]构成的系,由于gn到gn1之间存在自然限制映射,此系也存在射影极限Λ,事实上,Λ同构于以zp为系数的幂级数环zp[[t]],它被称做岩泽代数.”
“回到分圆zp扩张的情形.kn的理想类群是有限交换群,记其p部分是an.一方面,由于它是p阶群,有zp的作用;而另一方面knk的伽罗瓦群作用在它上面,故an是环zp[gn]的有限模.由于kn+1到kn有自然的映射,我们可以得到an+1到an的自然映射.”
“从ch(a)=ch(ec).可以看出,a说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。”
“从这个角度来看,想要用一个合适的伽罗德域作为有限交换群,进而等同代数和p进数恐怕是一件很难的事情。”
闻言,陶哲轩陷入了沉思中,半响后才道:“但域群的有限扩张应该可以解决这个问题,这可以利用舒尔茨教授的类似完备空间理论,这套理论能做到将局部域上的算术问题简化表示为特定的特征及特征域的组合”
徐川耸了耸肩,道:“抱歉,这方面我就不清楚了,舒尔茨教授的‘p·s进域-几何理论’我并不熟悉,不然今天我也不会坐到这里学习了。”
这方面他的确不熟悉,p·s进域-几何理论是代数与几何方面的东西,而p进数更是纯数论方面的,上辈子他基本没多少了解,刚刚他说的这些东西还是过年之前学些域扩张时了解的一些知识。
听到这话,陶哲轩才猛然惊醒过来:“哦,我差点忘了伱今年才上大一,舒尔茨教授的类似完备空间理论对于大学生来说的确有点难懂。”
“不过你的学识真是让我吃惊,没想到除了谱渐近和具分形边界连通区域外,你对在群环和有限域上的理解也这么深刻。”
www.biqizw.com比奇中文
孙氏仙途 从觉醒蓝银草开始 巫师:从骑士呼吸法开始肝经验 怒甩渣男后她被首富骗婚了姜离陆时晏 韶光艳 碰瓷首富后我闪婚了姜离陆时晏 争霸文里的娇软美人 重启2003 闪婚对象是首富姜离陆时晏 快穿之艳光四射 我为表叔画新妆 大明嫡长子 综武:偷看我的日记,师娘崩溃了 00后老师:学生迟到,我也迟到 参商 悟性逆天,在现实世界创造五雷法 北斗 我真的不是道主啊! 我在现实世界给武技加点 快穿之娇妻
萌宝马甲追妻火葬场真假白月光邵景淮和阮初初订婚后,总觉得她就是个恶毒爱演戏的女人,甚至还逼走了他的救命恩人白冉。直到有一天,这个女人跑路了,临走前还给他留了个崽。六年后,她回来了,一来就要跟他抢孩子。邵景淮满头黑线,只想狠狠收拾一顿这个不知天高地厚的女人。却不料,他发现,她还带了个崽回来?不但如此,救命恩人也是她?邵景淮慌了,一心只想求原谅。可阮初初却笑了无恨,哪来的原谅?我只想去夫留子,您请便。自此,双宝助攻路遥遥,邵总追妻路漫漫!...
武大郎为何帅到出奇?潘金莲为何贤惠温婉?西门庆如何成为大善人?武植轻叹口气,看向旁边熟睡的潘金莲怎么都想不通,老子一个普普通通的穿越者,本来只想老婆孩子热炕头的过自己的小日子。怎么会忽然就成了潘金莲她相公了呢?...
凡人流无系统与传统仙侠写法不同,不喜勿入那一年,七岁的男孩儿带着妹妹踏入了修仙界,然后,修仙的全疯了! 出来修仙,你天赋好不好,宝贝多不多,有没有机缘,这些都不重要,但你一定要记住,有一个人你不能惹。 虽然这个人并不是什么修仙之人。 但是他的刀,比光还快,快到你根本来不及调动灵力。 他的拳,比天还重,重的可以一拳让这个世界停止自转。 他的嘴,比我还贱,贱的可以让烈阳流泪,让皎月燃烧。 他是谁?他是一个没有修仙天赋,却在修仙界练武的靓仔。 多年以后,修仙界一众大佬们问他林大靓仔,你一个练武的为啥非要跑到修仙界呢? 少年笑嘻嘻的回答道我只是没有修仙的天赋而已,但我超喜欢在修仙界玩耍的,那里面个个都是人才,说话又好听,还有各种花里胡哨的特殊才华,哎哟我超喜欢里面的。 修仙大佬们集体绝望喜欢?喜欢你提着把刀砍了半个修仙界?各位书友要是觉得那些年,我们一起砍过的修仙者还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
都市电竞日常直播陪玩代练无脑爽文林天穿越蓝星,这里全民都在玩王者。但没想到原主身患绝症,只剩七天可活。绑定游戏系统后,他成为无敌全能选手,且做任务就能加生命。任务1给女老板陪玩,获得好评加一天生命。任务2给女老板代练,完成单子加两天生命。任务3随着系统功能逐步解锁,他还获得了内含房车技能及各种道具的宝箱。陪玩撞车德华,在土鸡高地虐泉一打五。...
山野少年叶凡,父母被害,妹妹双目失明,自己被打断一条腿,原本以为这辈子报仇无望。直到那天,叶凡上山采药碰到水潭洗澡的寡妇张,从此人生变得多姿多彩...
燕争穿越异界,沦为被流放的九皇子,三年后喜提人生模拟器。积攒杀戮点便可进行模拟。淬体三重时,你闯关失败,被铜人乱拳打死。淬体五重时,你帮助某家族平定内乱后,被挖坑活埋。淬体六重后,你加入某门派,却被长老炼成人丹。千万年后,燕争进行第1亿次模拟。修为满级的你已经无敌,系统即将自爆...