手机浏览器扫描二维码访问
我不知道的是她们也来到了太阳系,不过不是我们现在的太阳系,而是平行宇宙里的太阳系,不是我搞得同频共振形成旋涡太极阴阳八卦图,也不会让她们定位到我所处的时空坐标,都是小兽那个臭不要脸的玩意,把位置发给了她们,并开启了同步传送环,把她们一个个都送了过来,他自己不知道躲那去齁着了,不然怕我削他哈。
我被发现完全是无心之举,都是小兽那个臭不要脸的玩意,它就是个搅屎棍:(在此声明,小说借用的一切理论都是胡说八道,豪无人性的,千万不可当真哈,为的就是天马行空的脑洞大开,不负任何法律责任哈)他利用了一维无界弦振动的原理:
一维无界弦振动的数学解析
一维无界弦振动的数学解析涉及到的是一维波动方程,也称为弦振动方程。这个方程可以用来描述弦在不同时间和位置上的振动状态。在没有外力作用的情况下,弦振动方程可以通过达朗贝尔公式直接求解。然而,当考虑外力时,不能直接使用达朗贝尔公式求解,而是需要通过叠加原理将方程齐次化,进而求解。
自由振动的解析
对于自由振动的情况,即没有外力作用的情况,弦振动方程的解可以通过达朗贝尔公式得到。这个公式表达了弦振动的两部分:一部分是沿着弦传播的波,另一部分是反向传播的波。这两部分波的叠加形成了弦在任何时刻的总振动形态。
受迫振动的解析
对于受迫振动的情况,即存在外部力作用的情况,弦振动方程的解需要通过更为复杂的方法获得。一种常见的方法是使用叠加原理,将无界弦的受迫振动分解为自由振动和纯强迫振动问题,对两个问题分别求解,最后把它们的解叠加即可。
数值方法
除了解析方法外,还有数值方法可以用来解决一维无界弦振动的问题。例如,可以使用傅里叶变换法、拉普拉斯变换法、行波法等方法来求解无界弦的自由振动和受迫振动问题。这些方法可以将连续的物理问题转化为离散的数学问题,从而便于计算机进行数值计算。
结论
一维无界弦振动的数学解析是一个复杂的问题,涉及到多种数学工具和方法。在实际应用中,选择合适的解析方法或数值方法取决于具体的问题条件和所需的精确度。
一维无界弦的量子解:
一维无界弦振动的解析通常涉及量子力学中的薛定谔方程。在量子力学框架内,一维无限深势阱(infinitepotentialwell)问题提供了一个简化的模型来描述弦振动。假设弦的质量密度为μ,长度为L,并且弦两端固定,不允许任何位移,那么弦的有效振动模式可以用正弦波来表示。
弦的动能算子(Kineticenergyoperator)是:[hat{T}=-frac{hbar^2}{2mu}frac{partial^2}{partialx^2}]
其中,x是弦上的位置坐标,?是约化普朗克常数。
如果弦的势能仅在两端固定时为无穷大,则势能算子(Potentialenergyoperator)为:[hat{V}=0quad(0<x<L)][hat{V}=inftyquad(xleq0,xgeqL)]
薛定谔方程为:[ihbarfrac{partial}{partialt}Psi(x,t)=hat{H}Psi(x,t)]其中,Ψ(x,t)是波函数,t是时间,hat{H}是哈密顿算符,它是动能和势能算符的和:[hat{H}=hat{T}+hat{V}]
在势阱内部,薛定谔方程简化为:[ihbarfrac{partial}{partialt}Psi(x,t)=-frac{hbar^2}{2mu}frac{partial^2}{partialx^2}Psi(x,t)]
这是一个时间依赖的偏微分方程,其解可以写成时间和空间的分离形式:[Psi(x,t)=psi(x)e^{-iEthbar}]其中,ψ(x)是时间独立的波函数,E是能量本征值。
将这个形式代入薛定谔方程,得到时间独立部分的薛定谔方程:[-frac{hbar^2}{2mu}frac{d^2}{dx^2}psi(x)=Epsi(x)]
这是一个二阶常微分方程,其解为:[psi_n(x)=A_nsinleft(frac{npix}{L}right)]其中,n是一个正整数,代表弦的振动模式,A_n是归一化常数。
这章没有结束,请点击下一页继续阅读!
能量本征值为:[E_n=frac{n^2pi^2hbar^2}{2muL^2}]
因此,一维无界弦的振动模式可以用正弦波的线性组合来表示:[Psi(x,t)=sum_{n=1}^{infty}A_nsinleft(frac{npix}{L}right)e^{-iE_nthbar}]
通过归一化条件可以确定系数A_n,确保波函数的总概率为1。
而它的频率计算为:
一维无界弦的振动频率可以通过其能量本征值来计算。根据量子力学中的薛定谔方程,一维无限深势阱问题的能量本征值由以下公式给出:[E_n=frac{n^2pi^2hbar^2}{2muL^2}]其中,(E_n)是第n个能级的能量,(n)是量子数(正整数),(hbar)是约化普朗克常数,(mu)是弦的线密度(质量除以长度),(L)是弦的长度。
振动频率(f_n)与能量本征值(E_n)之间的关系由以下公式给出:[f_n=frac{E_n}{h}]其中,(h)是普朗克常数。
将能量本征值的表达式代入上述频率公式,我们得到:[f_n=frac{n^2pi^2hbar^2}{2muL^2h}]因为(hbar=frac{h}{2pi}),所以可以将(hbar)替换为(frac{h}{2pi}),从而得到:[f_n=frac{n^2pi}{2muL^2}]
这就是第n个振模式的频率。需要注意的是,这里的频率是角频率,单位是弧度每秒(rads)。如果要转换为周期性频率(单位是赫兹,Hz),我们只需将角频率除以(2pi):[f_n(text{Hz})=frac{n^2pi}{2muL^2}timesfrac{1}{2pi}=frac{n^2}{2muL^2}]
因此,一维无界弦的第n个振模式的频率(以Hz为单位)为:[f_n=frac{n^2}{2muL^2}]。
这家伙就是这样利用了薛定谔的猫,让薛老头顿悟出了举世属目的波动方程,它是跟猫有着多么大的仇恨哈,死磕到底的节奏哈。所以它也继承了薛老头的科学技术并运用到它的日常生活的方方面面。猫捉耗子这个千载难逢的机会被它反转的彻彻底底,薛家猫到死都不知道怎么死的哈。
喜欢穹顶天魂的新书请大家收藏:(www.630zww.com)穹顶天魂的新书【630中文网】更新速度全网最快。
镇魂街:九黎后主 黑道:我那些年收服的江湖大佬 狱锁官途,被迫成为狱警之后! 放弃万亿家产,入伍后女神急哭了 御控天下 穿越古代:我的空间有军火 欺诈师少女的温馨日常 新人驾到 崽被读心后,暴君黑脸抓出男太后 大唐:天生神力,我竟是皇族血统 新婚夜,我的老公换人了! 无限升级系统 末世降临,开局捡到孟子奕 变身倾世长生仙,我以医术救世人 收个破烂,我成了透视神医 快穿:宿主她超会! 末世:我觉醒了十二星灵 联盟:补位选手 唐臾唐却尘危雁迟危仅Vi小说 叙事生活
倒霉留学生李杰因为一次医疗事故,意外获得了透视能力。美利坚仓储寻宝黄金恶魔谷淘金回收古董计划深海打捞旧时代宝藏这是一个小人物的成长发家史...
未来,至白七日之后,人类觉醒真气。侠客魔道横空出世,正邪冲突,日渐焦灼。八字至阴,亡神入命,有此命格者必为一代魔头。少年命途多舛,际遇诡谲,难入侠道。不成侠,不为恶,不怨天尤人,不自甘沉沦。前方孤绝曲折,少年早早上路...
偶获镇魔塔,得绝世魔主传授魔种,从此落魄少年一飞冲天看我如何搅得这世间一片纷乱!...
山野少年叶凡,父母被害,妹妹双目失明,自己被打断一条腿,原本以为这辈子报仇无望。直到那天,叶凡上山采药碰到水潭洗澡的寡妇张,从此人生变得多姿多彩...
陈家天才陈凡,为爱人而战,却沦为废人,修为尽失并遭冷眼!偶入圣地,一朝修炼得万古圣体,窥得九天大道!这一次!陈凡不会再准许有人负他!...
意外重生在大乾国,家境贫寒,日子艰苦,还好,苏定生凭借着自身掌握的现代知识,发家致富,搞养殖,建冰厂,开火锅连锁店,逐渐改善生活,一步步发展壮大,成为有名的富绅,原本苏定生只想平平稳稳过着自己富裕轻松的小日子。但恰逢乱世,边境屡屡失守,四方之敌不断进犯,导致大乾国连年战火,民不聊生,小有资产的苏定生一家老小首当其冲,为求自保,苏定生只能奋力向前。招壮士,募私兵,造弓弩,发明火药,研制火枪炸药跟大炮。平定四方,成就一番宏图大业,不世之功,永垂不朽!...